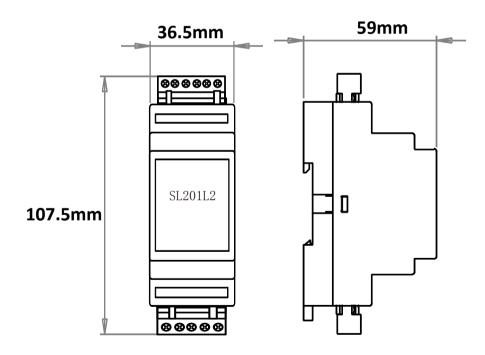
SL201L2(应变桥式)数字变送器 产品说明书

目录

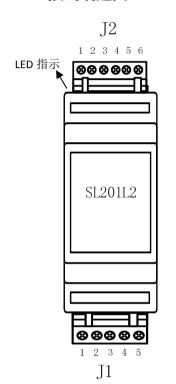

第	1章 概述	
-1-	外形尺寸	
	技术指标	
^ 		
弗	2 章 接线与调试	
	接线端定义	
	通讯方式	3
	LED 指示灯	
	接线说明	
	设备连接示意图	4
	恢复出厂默认配置	4
第	3章 MODBUS 通讯协议	!
	表 1 寄存器表	!
	表 2 线圈对应表	8
	表 3 命令对应表	8
ru . I	寻·佑田夫田妳伙进行会粉配署	11

文档版本: V20220117 www.myradio168.net

第1章 概述

- 内置 ARM 高速高性能微处理器、24 位高精度 AD 转换,分辨率可达 1/30000
- 9~32v 宽供电范围,具有多重保护,电源防反接保护
- 内置多种数字滤波器。滤波参数可调,抗干扰能力强
- 最多9段非线性标定,有效提高测量精度
- 具有RS485通讯接口,支持标准MODBUS RTU协议、MODBUS ASCII协议(自动识别)
- 可接称重、拉压力、扭矩等各种应变桥式传感器、工业标准导轨式安装

外形尺寸



技术指标

供电电源	9~32 VDC
功率消耗	9mA@24V (不接传感器)
综合精度	0.1±2digit %F.S.
适应传感器灵敏度	0.8 ~ 7.8 mV/V
传感器激励电压	5V
负载阻抗	350 欧姆
AD 采样分辨率	24 位
AD 转换速率	10~320 次/秒
通讯接口	RS485
通讯速率	1200~115200 bps
校验方式	无/奇校验/偶校验
通讯协议	Modbus RTU, Modbus ASCII
工作温度范围	-20°C [~] +80°C
外壳材质	ABS
重量	80g(含端子)

第2章 接线与调试

接线端定义

序号 符号 说明						
1	V+	直流正极				
2	V-	直流负极				
3	GND	接地				
4	RS485-A	RS485 通讯接口 A 端				
5	RS485-B	RS485 通讯接口 B 端				

J2 传感器接口					
序号	符号	说明			
1	SHLD	屏蔽地			
2	SHLD	屏蔽地			
3	EXC+	激励正极			
4	SIG+	信号正极			
5	SIG-	信号负极			
6	EXC-	激励负极			

注 1: 直流供电接口具有防反接功能

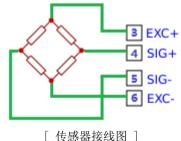
注 2: RS485 通讯接口具有 3k 上拉,下拉电阻

通讯方式

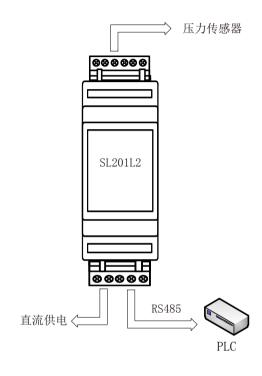
SL201L2 是一款高集成度的现场重量信号采集(控制)的专用产品。它具有 RS485 通讯口。当多台设备接入 RS485 网络时,建议采用链式连接。在 RS485 网 络的最远终端建议接 120 欧姆的终端匹配电阻

LED指示灯

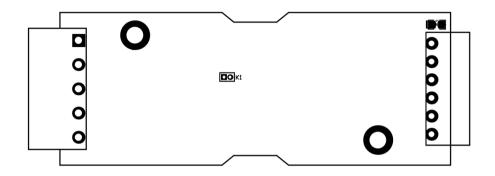
为方便现场调试工作,SL201L2 具有一个 LED 灯作为指示,其状态如下:


慢闪: 串口未读(写)时每隔5秒闪烁一次

快闪:读(写)一次串口,LED 闪烁一次


常亮:设备故障

接线说明


- ◆ 通过电源线将设备后端接地,并保证接触良好。不要将地线接至其它设备之 地线。
- ◆ 设备采用的是直流安全电压,但为了防止控制器内精密采样芯片损伤,在安 装设备和系统接线时请先断开电源

设备连接示意图

恢复出厂默认配置

使用镊子将 K1 短路大于 3 秒(LED 指示灯常亮),松开后 SL201L2 系统参数将恢复出厂 默认配置并复位重启。

注:系统参数:设备站号=1、RS485波特率=9600bps、RS485奇偶校验=无校验

第3章 MODBUS通讯协议

- 默认格式: 9600bps, 1个起始位, 8位数据, 无校验, 1个停止位, 默认站号: 1。
- 每个参数为 32 位数据,占用 2 个寄存器(高 16 位在前,低 16 位在后),每次读写寄存器数量必须双数

表1 寄存器表

参数编号	参数名称	寄存器地址	访问 方式	取值范围	说明
0	采样裸值	0000~0001	读	32位整数	默认:0
1	测量值	0002~0003	读	32位整数	默认:0
2	命令执行	0004~0005	写	32位整数	读始终为0
3	保留	0006~0007	读/写	32位整数	0
4	设备站号	0008~0009	读/写	1~255	默认:1
5	测量偏移值	000A~000B	读/写	32位整数	默认:0
6	标定点数	000C~000D	读/写	2~9	默认:2
7	标定采样值1	000E~000F	读	32位整数	
8	标定采样值2	0010~0011	读	32位整数	
9	标定采样值3	0012~0013	读	32位整数	
10	标定采样值4	0014~0015	读	32位整数	
11	标定采样值5	0016~0017	读	32位整数	
12	标定采样值6	0018~0019	读	32位整数	

参数编号	参数名称	寄存器地址	访问 方式	取值范围	说明
13	标定采样值7	001A~001B	读	32位整数	
14	标定采样值8	001C~001D	读	32位整数	
15	标定采样值9	001E~001F	读	32位整数	
16	标定测量值1	0020~0021	读/写	32位整数	
17	标定测量值2	0022~0023	读/写	32位整数	
18	标定测量值3	0024~0025	读/写	32位整数	
19	标定测量值4	0026~0027	读/写	32位整数	
20	标定测量值5	0028~0029	读/写	32位整数	
21	标定测量值6	002A~002B	读/写	32位整数	
22	标定测量值7	002C~002D	读/写	32位整数	
23	标定测量值8	002E~002F	读/写	32位整数	
24	标定测量值9	0030~0031	读/写	32位整数	
25	保留	0032~0033	读/写	32位整数	0
26	信号采样速率	0034~0035	读/写	0~3	默认:0(10SPS)
27	保留	0036~0037	读/写	32位整数	0
28	信号增益	0038~0039	读/写	0~1	默认:1(128倍)
29	三次数字滤波器	003A~003B	读/写	0~5	默认:5(32级滤波)
30	三次滤波区间值	003C~003D	读/写	32位整数	默认:10
31	首次数字滤波器	003E~003F	读/写	0-1000	默认:0(禁用)

参数编号	参数名称	寄存器地址 (16进制)	访问 方式	取值范围	说明
32	二次数字滤波器	0040~0041	读/写	0~1	默认:1(使能)
33	保留	0042~0043	读/写	32位整数	0
34	保留	0044~0045	读/写	32位整数	0
35	保留	0046~0047	读/写	32位整数	0
36	保留	0048~0049	读/写	32位整数	0
37	保留	004A~004B	读/写	32位整数	0
38	保留	004C~004D	读/写	32位整数	0
39	保留	004E~004F	读/写	32位整数	0
40	保留	0050~0051	读/写	32位整数	0
41	保留	0052~0053	读/写	32位整数	0
42	保留	0054~0055	读/写	32位整数	0
43	保留	0056~0057	读/写	32位整数	0
44	自动零点时间	0058~0059	读/写	0~200	默认:50 (单位:10毫秒)
45	自动零点区间值	005A~005B	读/写	32位整数	默认:10
46	判稳时间	005C~005D	读/写	1~200	默认:50 (单位:10毫秒)
47	判稳区间值	005E~005F	读/写	32位整数	默认:10
48	分度值	0060~0061	读/写	0~4	默认:0(分度值1)
49	保留	0062~0063	读/写	32位整数	0
50	保留	0064~0065	读/写	32位整数	0

参数编号	参数名称	寄存器地址	访问 方式	取值范围	说明
51	保留	0066~0067	读/写	32位整数	0
52	RS485波特率	0068~0069	读/写	0~7	默认:3 (9600bps)
53	RS485奇偶校验	006A~006B	读/写	0~2	默认:0(无校验)
54	保留	006C~006D	读/写	32位整数	0
55	保留	006E~006F	读/写	32位整数	0
56	保留	0070~0071	读/写	32位整数	0
57	保留	0072~0073	读/写	32位整数	0
58	保留	0074~0075	读/写	32位整数	0
59	保留	0076~0077	读/写	32位整数	0
60	保留	0078~0079	读/写	32位整数	0

通讯口相关参数:

串口通讯波特率	值
1200bps	0
2400bps	1
4800bps	2
9600bps (默认)	3
19200bps	4
38400bps	5
57600bps	6
115200bps	7

串口通讯校验方式	值
无校验 (默认)	0
奇校验	1
偶校验	2

AD 采样相关参数:

信号采样速率	值
10SPS	0
20SPS	1
80SPS	2
320SPS	3

AD 采样速率越快采集的信号将变的不稳定,适当启动数字滤波器将改善信号质量

二次数字滤波器	值
禁用	0
启用 (默认)	1

三次数字平滑滤波器	值
禁止平滑滤波	0
2 级平滑滤波	1
4级平滑滤波	2
8级平滑滤波	3
16 级平滑滤波	4
32 级平滑滤波(默认)	5

数字平滑滤波级数越高,滤波效果越好

数字滤波开启后,滤波效果改善明显,但测量值更新变慢。

首次数字滤波器	值
禁止滤波 (默认)	0
滤波器截至频率(单位: Hz)	1-1000

信号增益	值
64 倍增益(默认)	0
128 倍增益	1

64 倍: 传感器灵敏度范围 3.9~7.8mV/V 128 倍: 传感器灵敏度范围 0.8~3.9mV/V

判稳时间	单位
1~200(默认:50×10毫秒)	10 毫秒

若连续两次测量值的差值≤判稳区间值, 当前状态保持设定的判稳时间,则认为当 前测量状态为稳定状态

测量偏移值				
将当前测量值写入该寄存器将清零				

自动零点区间值	值	自动零点时间	单位
默认: 10		0~200(默认:50×10毫秒)	10毫秒

根据标定,测量值为5001,分辨为0.1时:若当前测量值≤(自动零点区间值×0.1)时 启动自动零点程序,当前状态保持设定的时间,将自动归零(清零状态断电不保存)

标定点数			
至少2个标定点才能进行工作,最多9个标定点(多于2个标定点,	2-9		
适合传感器线性度不佳情况下使用)			

分度值	值
1 (默认)	0
5	1
10	2
50	3
100	5

分度值即最小刻度值,就是所能读出的最小值。

注: MODBUS RTU 协议时,每次最少读写 1 个参数 (2 个寄存器),最多读写 60 个参数 (120 个寄存器); MODBUS ASCII 协议时,每次最少读写 1 个参数 (2 个寄存器),最多读写 30 个参数 (60 个寄存器)

通讯举例:

1. 读取测量值: 寄存器起始地址 0x0002~0x0003, 连续读 2 个寄存器

发送: 01 03 00 02 00 02 65 CB

返回: 01 03 04 00 00 C3 75 6B 24 (测量值=50037)

2. 读取站号: 寄存器起始地址 0x0008~0x0009, 连续读 2 个寄存器

发送: 01 03 00 08 00 02 45 C9

返回: 01 03 04 00 00 00 01 3B F3 (站号=1)

3. 读取 RS485 通讯波特率: 寄存器起始地址 $0x0068 \sim 0x0069$,连续读 2 个 寄存器

发送: 01 03 00 68 00 02 45 D7

返回: 01 03 04 00 00 00 07 BB F1 (RS485 通讯波特率 115200bps)

4.修改站号为 2: 寄存器起始地址 0x0008~0x0009, 连续写 2 个寄存器

发送: 01 10 00 08 00 02 04 00 00 00 02 73 C8

返回: 01 10 00 08 00 02 C0 0A

表2 线圈对应表

线圈地址 (16进制)	访问方式	意义描述
0001	写	清零/反清零(清零状态会保存)
0002	读	稳定标志
000F	读/写	标定允许

清零/反清零	写值
清零	0xFF00
反清零	0x0000

稳定标志	读值
当前测量值不稳定	0x00
当前测量值稳定	0xFF

标定允许	读值	写值
允许	0xFF	0xFF00
禁止	0x00	0x0000

表3 命令对应表

命令代码 (10进制)	命令代码 (16进制)	访问方式	意义描述
1	0x01	写	清零(清零状态断电保存)
15	0x0F	写	标定允许

可通过向命令寄存器写命令来执行相应功能,命令寄存器 16 进制地址 0004~0005,该寄存器只能写,读出数据始终为 0

- 1. 通过命令寄存器执行清零: 01 10 00 04 00 02 04 00 00 00 01 33 9C 返回: 01 10 00 04 00 02 00 09
- 2. 通过命令寄存器执行标定允许: 01 10 00 04 00 02 04 00 00 00 0F B2 58 返回: 01 10 00 04 00 02 00 09

通讯举例:

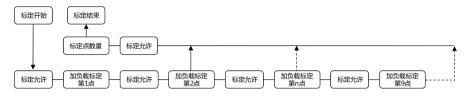
1. 标定允许: 写标定线圈地址: 0x000F, 写入值: 0xFF00

发送:01 05 **00 0F FF 00** BC 39 **返回:**01 05 **00 0F FF 00** BC 39

2. 清零: 写标定线圈地址: 0x0001, 写入值: 0xFF00

发送:01 05 00 01 FF 00 DD FA 返回:01 05 00 01 FF 00 DD FA

3. 反清零: 写标定线圈地址: 0x0001, 写入值: 0x0000


发送:01 05 00 01 00 00 9C 0A 返回:01 05 00 01 00 00 9C 0A

4. 读稳定标志: 读标定线圈地址: 0x0002, 读 1 个线圈

发送:01 01 00 02 00 01 5C 0A

返回:01 01 01 FF 11 C8 (稳定) 01 01 01 00 51 88 (不稳定)

标定传感器示例

1. 标定允许: 写标定线圈地址: 0x000F, 写入值: 0xFF00

发送:01 05 **00 0F FF 00** BC 39 返回:01 05 **00 0F FF 00** BC 39

2. 空载时[写标定测量值 1],标定值 0: 寄存器起始地址 0x0020~0x0021,连续写 2 个 寄存器

发送: 01 10 00 20 00 02 04 00 00 00 00 F1 B7

返回: 01 10 **00 20** 00 02 40 02

3. 标定允许: 写标定线圈地址: 0x000F, 写入值: 0xFF00

发送:01 05 **00 0F FF 00** BC 39 返回:01 05 **00 0F FF 00** BC 39

4. 加标准载荷时[写标定测量值 2]: (标准载荷为 500g, 要分辨到 0.1g, 写入 5000)

寄存器起始地址 0x0022~0x0023, 连续写 2 个寄存器

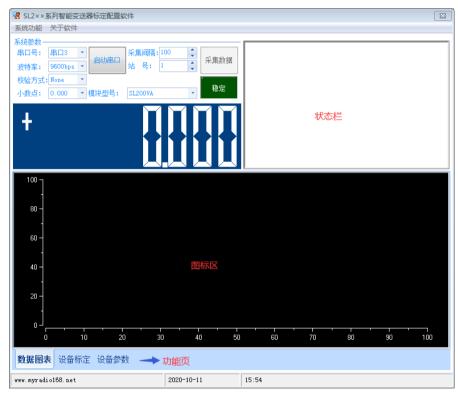
发送: 01 10 00 22 00 02 04 00 00 13 88 7D 38

返回: 01 10 **00 22** 00 02 E1 C2

5. 标定允许: 写标定线圈地址: 0x000F, 写入值: 0xFF00

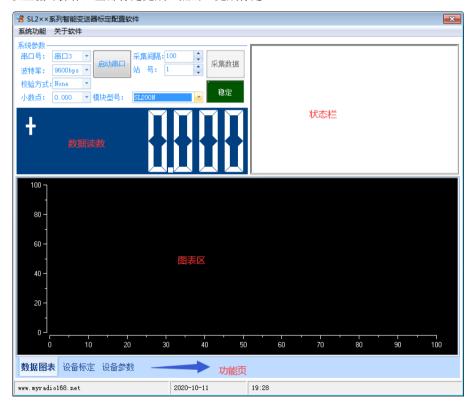
发送:01 05 00 0F FF 00 BC 39

返回:01 05 **00 0F FF 00** BC 39


6. 设置标定点数 2 点: 寄存器起始地址 0x000C~0x000D,连续写 2 个寄存器

发送:01 10 00 0C 00 02 04 00 00 00 02 72 3B

返回:01 10 **00 0C** 00 02 81 CB


附录:使用专用软件进行参数配置

1. 安装并运行 SL2××系列智能变送器标定配置软件. exe, 软件界面如下

正确选择设备连接的串口号等参数,选择相应的模块型号,点击'打开串口'按钮,当 状态栏提示串口打开成功后,可以点击'开始采集'按钮进行数据读取。'稳定'指示 灯提示当前数据是否为可用的数据。

- 2. 在'设备标定'页,我们可以从第1点开始标定,标定步骤如下:
- 首先用户在传感器上加标准载荷
- 然后输入'当前标定值',并点击'标定当前点'按钮。
- 当状态栏提示数据写入成功后,点击'下一个标定点'按钮
- 以上循环操作,全部标定完成,点击'完成标定'

3. 配置设备参数

在'设备参数'页,我们可以读取,修改设备的所有运行参数。

如图所示 '▶'读取参数,'◀'写入参数。可以点击'读取全部参数'按钮将所有参数一次读出。也可以点击'写入全部数据'将所有参数一次写入。